Perfusion Safety Review in Japan

Atsushi SEKIGUCHI

Department of Medical Engineering,
Saitama International Medical Center, Saitama, JAPAN

and

Secretary General,
JaSECT; The Japanese Society of Extra-corporeal Technology in Medicine
Thoracic and cardiovascular surgery in Japan

Population: 127 million
Number of open heart center: 544 (97.1%)
Total number of OH Surgery: 53,741 cases

Annual report by the Japanese Association for Thoracic Surgery
Number of CPB in Japan (2006)

- **IHD**: 7,835 (18%)
- **Others**: 4,343 (10%)
- **910**: 910 (2%)
- **OPCAB**: 61%
- **11,021**: Conv.- CABG 7,124 (16%)
- **39%**: C–CABG
- **17,941**: CABG
- **61%**: OPCAB
- **15,092**: Valve
- **34%**: Conv.- CABG
- **7,386**: Congenital 7,386 (17%)
- **21%**: Vascular 9,376
- **7,835**: IHD 7,835 (18%)
- **MAZE, tumor, VAD, DCM, constrictive pericarditis, Htx, others**
Case load distribution of CPB

Average: 71 cases / hospital / year

<table>
<thead>
<tr>
<th># of Operations</th>
<th>Number of Centers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-24</td>
<td>68</td>
<td>12.5%</td>
</tr>
<tr>
<td>25-49</td>
<td>104</td>
<td>19.1%</td>
</tr>
<tr>
<td>50-99</td>
<td>164</td>
<td>30.1%</td>
</tr>
<tr>
<td>100-149</td>
<td>90</td>
<td>16.5%</td>
</tr>
<tr>
<td>150-199</td>
<td>39</td>
<td>7.2%</td>
</tr>
<tr>
<td>>200</td>
<td>79</td>
<td>14.5%</td>
</tr>
</tbody>
</table>

in 2006: 544
Who is allowed to run CPB?

- Pacemaker technician*
- Bio-medical engineer
- VAD technician*
- Respiratory therapist
- Hemodialysis technician
- Clinical Perfusionist
- Clinical Engineer (Legal ground for allowing clinical related practice)

Certificates by respective Societies

Nat’l License grant by the government

*Certificate system in preparation
Who is allowed to run CPB?

A CLINICAL ENGINEER: Governmental Licensee

- A “Clinical Engineer” is the one who officially allowed to perform CPB as well as Hemodialysis, Respiratory therapy and Bio-medical engineering services.

- 21,500 persons licensed.
 - More than 85% dedicated for HD
 - Approx. 7% dedicated for CPB

- Requirements
 - 3 to 4 years education after High school education.
 - Pass national examination for permanent license.

- Limited education and training provided for CPB related subjects
Who is allowed to run CPB?
A “Certified Clinical Perfusionist”

- Certification grant from the joint board of three physicians’ societies: JSAO*, JATS*, JSCVS*.

- Requirement:
 - Licensee of “Clinical Engineer”
 - Membership of JaSECT and JSAO*
 - More than 3 years clinical experience with >30 CPB cases
 - Complete the 3 year education program (total 6 days) as a continued education seminar provided by JaSECT and JSAO*
 - Pass an examination including individual interview

- Currently 602 persons certified (1987-2007)
- Re-certification required every 5 year
 - Minimum 30 CPB cases experience within the period

JSAO: The Japanese Society for Artificial Organs
JATS; The Japanese Association for Thoracic Surgery
JSCVS; The Japanese Society for Cardiovascular Surgery
“Perfusion Safety Standard Measures”
Established by JaSECT
April 2007

Level 1: Minimum requirements <6 items>
(Crucial for safety and less barrier for implementation)

Level 2: Strong recommendations <9 items>
(Crucial, but some investment required. Expect to be in level 1 in near future)

Level 3: Moderate recommendations <9 items>
(Preferred, alternative methods can be acceptable)

Based upon consensus at the Council of Professional Perfusionists board of JaSECT
Compliance of the standard measures

Survey data as of March 2008
Date collected from 305/454 hosp. (67.3%)

<table>
<thead>
<tr>
<th>Overall Implementation rate</th>
<th></th>
<th>(waited average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 (6 items)</td>
<td></td>
<td>76.5%</td>
</tr>
<tr>
<td>Level 2 (9 items)</td>
<td></td>
<td>55.5%</td>
</tr>
<tr>
<td>Level 3 (9 items)</td>
<td></td>
<td>58.0%</td>
</tr>
</tbody>
</table>
Level 1 (minimum requirements) % : Implementation rate

Cardioplegia

Vent

Suction

Venous return

Arterial

Cardioplegia / vent pump

Suction pump

Arterial pump

Reservoir

(1) Reservoir level sensor 82%

(2) Continuous pressure monitor prior to Ox. 23%

(3) Pressure monitor line prior to arterial filter 67%

(4) Flow monitor for centrifugal pump 99%

(5) Arterial line filter or bubble trap 99%

(6) Pressure monitor at cardioplegia delivery line 99%
Level 2 (strong recommendation)
% : Implementation rate

1. SvO₂ monitor - 85%
2. Pump auto-regulation system link to reservoir low level detector - 35%
3. Bubble detector - 31%
4. Pump shutdown system link to bubble detector - 17%
5. High pressure alarm at arterial line - 80%
6. Pump shutdown system link to the high pressure alarm for roller pump - 55%
7. Arterial filter (Not bubble trap) - 79%
8. Bubble detector - 38%
9. High pressure alarm at cardioplegia delivery line - 80%

Cardioplegia / vent pump - 138%
Suction pump - 17%
Arterial pump - 80%
Reservoir - 55%
Oxy - 80%
(1) Arterial blood gas monitor 56%
(4) Pressure monitor line prior to arterial cannula 56%
(8) One way valve at filter purge line 56%
(3) Pressure monitor prior to arterial filter 47%
(9) Pump shutdown system link to high pressure alarm at CP delivery line 90%
(2) Pump flow regulation system link to high pressure alarm for centrifugal pump 15%
(6) Reverse flow prevention system for centrifugal pump 71%
(5) Low flow alarm for centrifugal pump 60%
Conclusion

- JaSECT has introduced “Perfusion Safety Standard Measures” in 2007 for “Better Practice”.
- The survey conducted one year after the introduction showed better implementation result than the past, however, it looks more time required to establish firmly among the all society members.
- Faster implementation is crucial especially for “pre-Oxy arterial line pressure monitor”, “alarm-linked pump shutdown system” and “bubble detector at the arterial line”.
- We will continue to educate our members for more higher implementation rate.